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We study the possibility of representing the kinematical variables of a free 
particle in terms of scale factors and integers. The action of a set of transforma- 
tions from the Lorentz group parametrized by integers on this systcm of variables 
are investigated, and it is shown that one can effectively characterize these 
symmetries on a lattice in this way. By taking the scales sufficiently small, one 
can arbitrarily closely approach the continuous case. 

1. I N T R O D U C T I O N  

The in t roduc t ion  of  a discrete space- t ime latt ice has been useful in the 
s tudy of quan tum gauge field theory.  The quest ion of the real izat ion of the 

con t inuous  symmetr ies  on the lattice, such as the Lorentz  group,  and 
the passage to the con t inuous  l imit  has not yet been comple te ly  worked out. 

In this pape r  it is shown that  the cont inuous  symmet ry  group of a free 
relat ivist ic  par t ic le  can be a p p r o x i m a t e d  on a discrete lat t ice in such a way 
that  the main  features of  the group s t ructure  are main ta ined  and the discrete 
real izat ion approaches  the or iginal  con t inuous  group in the limit that  the 

la t t ice approaches  the cont inuum.  
This is done  by ext rac t ing  a scale and integer coefficients from the 

physical  coo rd ina t e  and m o m e n t u m  and specifying the t rans format ion  

proper t ies  of these factors. 
We have shown that  only  in the s implest  case, the one-d imens iona l  

nonrela t iv is t ic  Ga l i l ean  group,  can one per fo rm a d iscre t iza t ion of  the 
values of m o m e n t u m  and pos i t ion  of  the free part icle,  assuming that  the 
co r respond ing  scale factors stay unchanged  under  t r ans format ions  from one 

admiss ib le  classical  Ga l i l ean  f rame to another .  
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To treat successfully the cases of two-dimensional Lorentz transforma- 
tions and two-dimensional rotations we introduce transformations of the 
scales in a definite way. 

In this way we select a discrete set of admissible states and a discrete 
set of admissible transformations that are parametrized by integer parame- 
ters in such a manner that in the limit of small scale parameters we can 
arbitrarily closely approach the continuous case. This procedure can be 
extended to the four-dimensional Minkowski space. 

The paper is organized as follows: In Section 2 we consider a one- 
dimensional nonrelativistic free particle motion and perform a discretization 
of the values of kinematical variables. This can be done maintaining the 
scale factors as invariants of the transformations. 

We devote Section 3 to the case of two-dimensional Lorentz trans- 
formations and its discretization. This is done by allowing the scale fac- 
tors to transform under Lorentz transformations. We show that proposed 
discretization procedure coincides with that considered in Section 2 in the 
nonrelativistic limit. As a technical result of this section we mention the 
decomposition of the two-dimensional Lorentz transformations into a prod- 
uct of two transformations, each of which forms a group with the usual 
relativistic law of velocity composition. 

In Section 4 we consider a discretization procedure in the case of 
two-dimensional relativistic free particle motion parametrized by a proper 
time. 

In Section 5, we study the discretization procedure for the compact 
two-dimensional rotation group in a way similar to the treatment of 
noncompact Lorentz transformations in Section 2. 

And finally in Section 6 we study the general case of the discretization 
procedure for the O(3, 1) Lorentz group. 

2. DISCRETIZATION OF THE CLASSICAL O N E - D I M E N S I O N A L  
GALILEAN FREE PARTICLE M O T I O N  

Let us first consider a classical Galilean free-particle motion taking 
place along the x axis of a fixed reference frame L o. If now v o is the velocity 
of the particle relative to this frame then the momentum P0 and the energy 
E o of this particle in this frame are given by 

9 

(1) Po = M v o ,  E~ - 2 M 

where M is the mass of the particle. 
We suppose further that at a moment t o the position of the particle in 

this frame L o was x 0. If now r is a "proper time" parametrizing the free 
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motion of the particle then we can talk about the initial position in 
four-dimensional  phase space of a particle at a moment r = 0 :  
(Eo, Po, Xo, to). At the arbitrary moment  r the position of the particle in 
phase space is ( E ( r ) ,  p ( r ) ,  x ( r ) ,  t ( r ) ) ,  where 

E( r ) =  E o, p(  r ) =  po (2a) 

and 

P0 
x ( r ) = X o + - - ~ r ,  t ( r ) = t o + r  (2b) 

Let us consider now an arbitrary reference frame L moving with a 
velocity v relative to L o along the x axis direction common to both L 0 and L 
reference frames. Then the velocity v' of the above considered particle in 
this reference frame L is 

v ' =  Vo + v (3) 

so that the initial (and conserved in time) momentum p;  and energy E6 are 
given in L by 

M y  ,2 
PO = P ' ( r )  = My ' ,  E6 = E ' ( r )  = 2 (4) 

where p ' ( r )  and E ' ( r )  are momentum and energy at a "proper-t ime" 
! t moment  r. The initial position x 0 and time t o at a moment  r = 0  are 

x '  o = x o + vt o (5a) 

t6 = t o (5b) 

so that the trajectory in phase space of a particle parametrized by r is given 
in an arbitrary reference frame L '  by (4) and 

p' p' 
x ' (  r )--- x '  o + - ~ r  = x o + vt o + --~r (6a) 

t ' ( -r )  = t ;  + �9 = to + (6b) 

Let us suppose now that there exist scales for all dimensional quantities 
entering in (4) and (6). We can choose three independent elementary scales: 
elementary scale of mass/*, elementary scale for position a, and elementary 

scale for velocity c. 
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Then the scales for momentum ~p and energy g~ can be written 
correspondingly as 

~t2C 2 (7) ISp=gC" g ~ -  2M 

and the scale for time a, as 

a M  
., - (8) 

c ~. 

We can now turn to the procedure for discretization of the description of 
the evolution of the free particle in classical one-dimensional nonrelativistic 
case. For this purpose we suppose that all physical quantities considered 
above characterizing the free-particle motion can take only admissible 
values which can be written as products of corresponding elementary scales 
and integer numbers {we write a caret on top of the corresponding letters 
standing for these integers). 

First of all we rewrite in this way the mass of the particle M, the 
velocity V 0 of the particle, the velocity of the Galilean transformation V, 
and the initial position of the particle x: 

M=~ff7 (9a) 

cA c/~ 
V o = ~ k  o, V=m^ (9b) 

x = aS- (9c) 

Then we have that 

c / /  c//, 
v'-- 7,( "o+1;)--=m lOa) 

p,=~ff, (10b) 

E ' =  #/~,2 (10c) 

C(~)=<(;o+ +) (lOd) 

X'(~):~(~+ ~io+ ~'+) (lOe) 

are also represented in "admissible" way that is, as a product of correspond- 
ing scales and integer numbers. 
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Let us note that we have considered up to now only the case of 
one-dimensional classical Galilean motion of a free particle. In this case all 
elementary scales stay unchanged under the action of Galilean transforma- 
tions. As we shall see this is not the case when two-dimensional Lorentz 
transformations are considered. 

3. T W O - D I M E N S I O N A L  L O R E N T Z  T R A N S F O R M A T I O N S  
ON T H E  LATFICE 

Our main goal will be now the generalization of the simple results of 
the previous section to the case of relativistic free-particle motion. We 
suppose that as in the classical nonrelativistic case we can limit ourselves to 
the discrete values of corresponding physical quantities describing a free- 
particle motion by the introduction of independent elementary scales and 
representing all physical quantities by products of corresponding scales by 
integer numbers. As before we distinguish the integer-valued quantities by 
carets on top of the corresponding letters. 

But now we cannot guarantee that these scale factors stay invariant 
under the Lorentz transformations. In fact as we shall see the action of 
Lorentz transformations on the momentum and position vectors written as 
products of corresponding scales and integer numbers, factorizes into action 
on the scales and on these integers. 

As for the Lorentz transformations that we admit, they are selected 
from the Lorentz group transformations by a procedure we are going to 
discuss now. The way we introduce what we shall call "admissible transfor- 
mations" also makes clear the decomposition of kinematical physical quan- 
tities of the free particle into products of scales and integers. 

Let us suppose now that we are given in some Lorentz frame of 
reference two-dimensional momentum (Po, P~) of the particles moving 
relative to this frame L 0 so that 

/'0 = ~t~o, t'~ = ~t~l ( l l )  

where p. > 0  is some scale parameter having the dimension of momentum, 
common for P0 and p~ decompositions and/~0 and/~t some integer dimen- 
sionless numbers such that ~ 0 > l ~ , l ,  P0>0 .  We suppose first that also 

/~ >0 .  
The transformation of the momentum in the two-dimensional case is 

given by 

, po+flPl P~+~Po ( V) (12) 
Po- (l_f12),/2, P'~- (1_fl2),/2 fl=-~ 
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which can be writ ten taking into account  (11) as 

1- /9 ) ' / ek ,+ /gb ,  
P('~ = # ~ 1-/9 (13a) 

, ( l--/9)t'2jSl+/~/}o 
P ' = g  ~ 1 - / 9  (13b) 

Let us suppose  now that in the new frame of reference L the momen-  
tum p~ can be wri t ten as 

p; = r*'k; -= t*'( k, +/,:o ) (14a) 

pi =,c~', - ~'(p, + a:,) (14b) 

where ,a' is the new scale pa rame te r  cor responding  to the new Lorentz  f rame 
and L and k0, / ] l  are posit ive integer numbers .  

Let us suppose  that 

1--/9) i/2 
~'= ~ ~ (15) 

Then from (13) and (14) it follows that 

bo +/gb, 1-/9 -po +ko (16a) 

b, +/gPo 
1 - f l  - ~' + ~' (16b) 

From (16a) it follows that  

ko /9 - (17a) 
Po + b, + ko 

and f rom (16b) that  

/9 _ ki (17b) 

We can satisfy (17) if we suppose  that 

/io = ~ , - / ~  (is) 
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So that in the new Lorentz frame L. moving with velocity V k =/3kC relative 
to the fixed Lorentz frame L o, such that 

/3k-  ^ <1 (19) 
PO + P1 +/~ 

the momentum is given by 

p0 - It'b~ = It'( b0 + k )  (2Oa) 

p~ - It'b~ = I t ' (  P, + k )  (20b) 

and the momentum scale factor is given by 

l - - /3k]  /2 
It'= l+~k  ] It (21) 

where/~ is an arbitrary positive integer number. 
Note that admissible/3k < 1 can take only discrete values [see (19)] and 

in the case of sufficiently small It(it 4 0 )  such that Po + / ~  is very large /3k 
falls almost on the continuum. 

The transformations 

Po +/3Pl (22a) 
P6 - 1 - B  

P, + flPo (22b) 
P l -  I-/~ 

form a group with a usual relativistic law of velocity composition. 
Indeed the composition of any two such transformations (22) leads, as 

it is easy to see, to the transformation of the same kind with the usual 
relativistic law of the velocity composition 

~! -}-/32 (23) 
/312 - 1 +Bi/32 

and in this set of transformations there exists a unit transformation corre- 
sponding to /3=0  and for any transformation characterized by /3 there 
exists an opposite transformation wi th /3 '=- - /3 .  It is easy to see also that 
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the transformations 

l - f l  2 

also forms a group with the same relatMstic velocity addition law (23) as 
before. 

Indeed we have that [see (15)] from 

I ~ T ]  /~, ~ /1' (25) 

follows that 

~ , ,= (1 - - ' 812 )  ' '2  
/1 (26) 

where fl~2 is given by (23), and the unit and opposite elements are given as 
in the previous case. 

The transformation from one admissible Lorentz frame L, that is, one 
in which the momentum can be written in the form (11), to some other L 
where momentum is given by (14), is characterized by admissible relative 
velocity v-'-ilk,C, where 

/ / ,  

ilk, riO + P, + s (27) 

Then the admissible Lorentz transformation from the Lorentz frame L' to 
some admissible Lorentz frame L" is characterized by ilk, such that [see 
(14)] 

s s . ,  - ( 2 8 )  

- p o + p l + s  /~0 +/~l +2s +/~2 

Since this transformation is parametrized by ,8;,, which is dependent on the 
parameter/&, characterizing the previous transformation from L 0 to L' we 
conclude that the second admissible transformation in the composition of 
two admissible transformations depends on the previous one. This means 
that the composition of any two admissible transformations is not neces- 
sarily itself an admissible transformation. This in turn means that the set 
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of admissible transformations which is a subset of the group of all transfor- 
mations (22) does not itself form a group. 

But the composition of a "chain" type characterized by ,Sk, and 13k, [see 
(27) and (28)] (where/3k. depends on the previous transformation parameter 
/,"~ ) is once again an admissible transformation characterized by/?k,k, where 
[because of (23)] 

/3,, +/3k, /(12 
flk,ke-- l+flk,flk: 150 nt- /01 q- s (29) 

so that 

;~,2=~,+~, (30) 

We have been dealing up to now with the set of admissible [compatible 
with equation (19)] Lorentz transformations leaving invariant the positive 
sign of the spacelike component of the momentum. This means that in all 
admissible frames of reference considered until now the movement of the 
particle takes place in the positive x direction. Yet we can consider the 
systems of reference possessing negative relative velocities/9 k, which can 
be written in the form 

P k -  k , + b  , _ s  (31) 

To clarify this point we note that in an arbitrary admissible Lorentz frame 
considered until now we have that 

Po = ~  + k o ,  b, = k o  (32) 

where ;47 corresponds to the mass of the particle. We suppose that the scale 
parameter in the system of rest of the particle is/-to then 

M = / % r h  (33) 

where M is the mass of the particle. 
Then the admissible transformations to the Lorentz frames moving 

forward relative to the fixed frame characterized by the integer number s 
[see (32)] must possess negative velocity ;8 equal to 

B - - (34) 

where s ~</~os >0.  
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Note that transformation with/3 equal to 

kO 
/ 3 -  ,~ + ko (35) 

corresponds to the transformation to the system of rest of the particle when 

/ 5 0 = ~ + k o - k o = ~ ,  / 5 ~ = k o - k o = O  (36) 

Now let us look for the set of Lorentz transformations leaving invariant the 
decomposition of the particle momentum 

P0 = g/5o, P, = ~#1 (37) 

where P0 >0 and p~ <0, so that in all admissible Lorentz frames of this set 
the movement of the particle takes place along the negative x direction of 
these Lorentz frames. 

For this purpose let us rewrite the usual Lorentz transformation (12) in 
the following form [compare with (13)]: 

(1+/3) ~ / 2 p o + / 3 p  I (38a) 
P;=-bt ~ 14-/3 

1 +/3 } i/2/51 +/3/50 (38b) 
P'~=" ~ 1+/3 

If we now suppose that after the transformation the new scale parameter/x' 
is equal to 

and that 

/1'={ 1+/3 i/2 
) ~ (39) 

P6 = ~'(/50 +/~) (40a) 

P'l =/~'( t5, - /~)  (40b) 

we come to the admissible velocity parameter/3k equal to 

/3k=-:o-p,+~= Po+l:,l+~ 
where/~ is an arbitrary positive integer number. 

(41) 
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As before it it easy to see that the "chain type" composition analogous 
to (27), (28) of two admissible transformations of the type now considered 
also leads to a transformation of this type with the usual relativistic velocity 
addition law. 

Note that for positive integer /~, flk given by (41) is negative. But 
transformations with positive /9, corresponding to the negative integer /~, 
also belong to this set. The only restriction for the positive # is that it must 
not be too big so that the corresponding transformation leads to the 
consideration of the admissible Lorentz frame with respect to which the 
movement of the particle still takes place in the negative x direction. 

To specify this point let us suppose that in some fixed admissible 
Lorentz frame of the set we are discussing now the momentum of the 
particle is (Po, P~ ). If p, is the scale of the momentum in this frame then we 
can write that 

p0 = + (42a) 

p, = -/~h:0 ~ ~/~ 1 (42b) 

where rh is the same as in (33). 
From this fixed frame we can transform to the set of admissible 

Lorentz frames of reference, characterizing by the relative velocity parame- 

ter/3 k, where 

#k- #o-#, +/~ (43) 

Taking into account (42) we have that 

#k - + 2;20 + (44) 

Then the maximum positive relative velocity given by (44), corresponding to 
the negative/~ equal to - k 0 corresponds to the transition to the system of 

rest of the particle. The case when 

-/~0 ~< s (45) 

corresponds to the transition from the fixed admissible Lorentz frame from 
the set now considered to the others from the same set moving with respect 
to this system in the negative x direction, but with respect to which the 
movement of the particle also takes place in the negative x direction. Note 
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that there is no restriction for the positive values of the integer/~ entering 
into (44) and that 

- l < f l k  ~<0 (46)  

for 

Let us compare now the two possible sets of transformations consid- 
ered above. As we have chosen the positive x direction in an arbitrary way 
let us check if there is a correspondence between the admissible movement 
of the particle in the positive x direction, described by the first set, and the 
description of the particle's admissible movement in the negative x direction 
given by the second set. 

It is easy to see that if the free particle possesses the admissible 
momentum p~, given by 

Po = #(rh + k~0), P. =/~k0 (47) 

then the momentum p~ 

P'I = -~/~o (48) 

corresponding to the particle moving with the same velocity but in the 
opposite direction is also admissible and that in both cases the scale 
parameter/~ entering in (47) and (48) and equal [see (24) and (39)] 

l_lBk I ),/2 
# =  1 +l/3k I /z o (49) 

is the same. Here in (45) fl is the velocity of the particle and/-to is the scale 
parameter in the system of rest of the particle, the same as in (33). 

The admissible values of the velocity parameter of the particle entering 
in (49) are 

~k + (50) 
r h + ~  

where/~ is an arbitrary positive integer number and rh is the same as in (33). 
At the end if we compare (19) and (41) giving up to a sign the same 

values for the admissible relative velocity parameters of Lorentz frames with 
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respect to the fixed frames where the particle is characterized by the 
momentum (P0, P i) and ( p o ,  - P i) ,  we come to the conclusion that there is 
a full correspondence of the description of the particle's movement in the 
positive x direction given by the first set and its movement  in the negative x 
direction described by the second set. 

There exists one special Lorentz frame which can be singled o u t - - t h e  
system of rest of the particle which is an admissible Lorentz frame for both 
of the above discussed sets. This fact makes it possible to join two sets 
considered above into one single joint set describing the movement of the 
free particle in both x directions. The admissible relative velocity can be 
given now in general as a relativistic sum of two admissible velocities 
corresponding to the same or to two different sets considered a b o v e - - o n e  
of these velocities corresponds to the transition to the system of rest of the 
particle while the other corresponds to the transition from the system of rest 
of the particle to the new admissible frame of reference from the same or 
different set of admissible transformations. 

Let us mention also that, as follows from (32) and (42), the following 
expression 

p o - l P l l - - , ~  (51) 

stays invariant under the transformations from the joint set. 
So we can conclude that the same way as two-dimensional Lorentz 

transformations leave invariant the mass shell given by a hyperbola, in the 
case of integers parametrizing possible values of admissible momentum they 
lie on the "cone" plotted in Figure 1. 

Let us suppose now that along with the momentum of the particle 

( Po,  P i ), where 

p0 = . P 0 .  p, =uP1 (52) 

given in some admissible Lorentz frame we are given also the position of the 
particle (x 0, x~) in the same frame. And let us assume that it can be written 
in the following form: 

x0 = a(P00o + Pl0,) 

x, = a(P001 + r 

(53a) 

(53b) 

The parameter  a entering into (53) is the scale parameter  having the 
dimension of length specific to the Lorentz frame considered and 00, ql are 
arbitrary dimensionless integer numbers. 
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Fig. I. The "'cone" of admissible momentum, replacing the usual mass shell. 

We are going to show that the decomposition of the position and time 
variables into some scale parameter  multiplied by integer numbers given by 
(53) stays invariant under the admissible transformations from the "joint" 
set of all admissible transformations. 

Let us suppose first of all that Pl >0 .  Then the admissible relative 
velocities characterizing the transformations to the possible Lorentz frames 
in respect to which the movement  of the particle takes place in the positive x 
direction are given by 

/~k - ^ (54) 
po +/~l +/~ 

where/~ is an integer and 

-pl~</~<oo 
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In the new admissible frame of reference after the transformation 
characterized by flk the momentum is 

P0 = ~'/~0 = g'(/~o + k)  (55a) 

^ 

p'~ =/x'b'  ~ =/~'k (55b) 

As to the position transformation given by 

x o + f l kx l  xt +f lkxo  
x , ' , -  ( l _ f l : ) , / z  , x ' , -  ( l _ f l / ) , / 2  (56) 

we can rewrite it in the following form using (53): 

( x,', = a 1--- Oo + 1 -  

, ( l--ilk )1/2[( P0+flk/~l ( Pl--flkPo 

01] (57a) 

qo] (57b) 

But [see (16)] 

Po + flk/~l =/~o = Po +/~ (58a) 
1 - f l k  

Pl + flkPO 
l _ # k  --- #', = #, + /~ (58b) 

So if we suppose now that the position scale parameter in new admissible 
frame is given by 

o,=[ 1-Bk ) 'j: 
1 + flk a (59) 

from (57) and (58) we have that 

t ^ t  ^ ^ t  ^ 

x o = a'(poqo + PlqL) 

t ^ t  ^ 

x I = a'( Poql + P'lgto) 

(60a) 

(60b) 

The case when p l ~<0 can be treated analogously. Indeed if we are given 
admissible momentum (Po, P~) and position (Xo, X ~) of the free particle 
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moving in the negative x direction (p l  <0)  then the admissible transforma- 
tions are characterized by relative velocity parameter/3,  

/3,- po_p,+~=- P~ ~ (61) 
where/~ is an integer and 

-[/~,[~</~ <oo (62) 

If we suppose now that as before momentum and position of the 
particle in some Lorentz frame can be written as 

Po = ~Po 

Xo=a(PoOo+P,O,) 
x, =a(PoO, +p,qo) 

(63a) 

(63b) 

(63c) 

(63d) 

then after the admissible transformation characterized by/3,  given by (61) 
momentum is given by 

Po = ~'1~; = ~'( JOo + h:) (64a) 

P~ = ~'/~i =/~'(/~, - / r  (64b) 

where 

/~,={ 1 + / 3 ' )  1/2 
1 --/3, /~ (65) 

The transformation of the position given by (56) can be rewritten now 
as [see (63), (64)] 

PO+BkP') (J6'+PkJ60) ] 
1 + flk qo + 1 + / 3 ,  ql 

Po+/3kP~) (P~+/3kG) ] 
1 + flk dll + I + flk dt~ (66a) 

(/~, --/~)Oo] = a ' ( /~0 ,  +/Y~Oo) (66b) 
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where 

(I+B~ '/2 (1-1B~I) '/2 
a'=a  ~ = a  l._~l~kl 

(67) 

So we see that the two special cases considered allow us to take the 
joint set discussed above as the set of all possible admissible transforma- 
tions of momentum and position vectors of the free relativistic particle 
leaving invariant the decomposition given by (52) and (53). 

Let us note that the scale parameter a corresponding to the movements 
of a particle with the same admissible velocities in opposite x directions, is 
the same and equal to 

(1-1~kl),/2 k (68) 
a =  l + l B k l  a ~  /3k = -+- rh +/~ 

We mention also that the time and position of the particle in all 
admissible Lorentz frames given by (53) are characterized by the same 
integer numbers q0 and q~. If we make now the transformation to the system 
of rest of the particle then from (60) and (36) we have that 

x o = ao~Oo (69a) 

xj = aorhOi (69b) 

which means that q0 parametrizes the time and O~ the position of the 
particle in its rest frame. Note also that 

P0-1~�91 (70a) 
/z _ /-t o 

a a 0 
(70b) 

and integers qo and OI are invariants of the transformation from the joint 

set. 

4. DISCRETIZATION OF RELATIVISTIC GALILEAN 
FREE-PARTICLE MOTION 

We suppose that in some Lorentz frame L o is given an initial phase-space 
point (pO, pO, x o, x 0) corresponding to the initial momentum and position 
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of a free relativistic particle taken at a momentum ~-=0 of proper time ~- 
parametrizing the evolution of the particle. 

Then the position of the particle in four-dimensional phase space at an 
arbitrary moment +, corresponding to the Lorentz reference frame L o is 
given by (po('r), pl(+), xo(~'), xl('r)) where [compared with (2)] 

pu(r)=p2 (71a) 

o + pO (71b) 

If we consider now an arbitrary Lorentz reference frame L moving with 
a velocity v =/3kC relative to L 0 then in this reference frame the initial 

t phase-space position is ps x , )  where 

, Pg + flk pO (72a) 
Po--  (1-/~Z) '/= 

' P~ (72b) P l - -  (~_~),/2 

and 

x ~  x~176 +f lkx~ (72c) 

(1-/~) '/-' 

x ~  x~ +f lkx~ (72d) 
(1 --/~2) l/2 

So that the trajectory m phase 
arbitrary Lorentz frame L by 

p ; ( - r )=  p~ 

p ] ( ' r )=  p'l 

space parametrized by -r is given in the 

(73a) 

(73b) 

p; 
~6(~)= x~ ~ , r -  

Xo~ + Bk x~ + ~ ,  
(73c) 

= T--  + ' ~ T  (73d) 

]compare with (5) and (6)]. 
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We suppose now that the Lorentz frame L o is an admissible one, so 
that the initial momentum (po ~ pO) and position (xo ~ x ~ of the particle can 
be written as 

po ~ =/~[/~o~ rh +/r ) +/~ofit ~ =- ~/~o (74a) 

pO = ~[/6O(rh +/~o) +/~o/5oo] ~/.t/~ t (74b) 

x ~  a[ 0o('47 +/<o)+ s =--aXo (74c) 

x ~ = a[ 0,( rh +/~o )+  C)o/r -= a2, (74d) 

The mass of the particle M can be written as 

M = ~orh (75) 

and evolution-invariant parameter + proper time as [see (6%)] 

+ = aorh? (76) 

Then the evolution in phase space in admissible Lorentz frame L o is 
given by [see (71)] 

and 

p~,('r) =/~/~, (77a) 

xo( , r )=a2o + ~Po aoth 9 
P,o m 

= a[(rh +/r +/~~ ) +/~o(0, +/~~ )] 

----a[(rh +/~o) qo( +)+/~oqt( ? )] (77b) 

x , ( r ) = a 2 1  + /~/~ aorh ? 
# o  m 

=a[( ~ + l~o)( #, + P~ )+ l~o( Oo + P~ )] 

-- a [(rh +/r "~ )+/r '~ )] (77c) 
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because [see (70b)] 
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(28) - - %  = a 
P'o 

From (77) follows that the evolution of the particle is taking place along 
admissible positions in phase space and that 

qo( ? ) = qo + Po ~ (79a) 

01 ( ~ ) = q, + rio? (79b) 

The evolution of the particle in an arbitrary Lorentz frame L given by 
(73) in the case when L is an admissible one is given by 

p;( r ) ~ t~'p; = # [  pO(rh + s ) + po/~] (80a) 

P'I( r ) =/~'p', =/~,[ rio( th + / ~ ) +  po;]  (SOb) 

x; ( , )  = a'[ p;0o(? )+ )] (80c) 

x',('r) = a'[/5•4,(? )+  p'lOo( ? )] (SOd) 

where 0~,(?) is given by (79). 
From (80) it follows that for each admissible moment of proper time 

characterized by an integer ?, in all admissible Lorentz frames the particle 
occupies the admissible position. 

In the nonrelativistic limit of small ilk(k: << rh) we have that 

f l k -  vk -- ]~ (81) c rh 

~ k =  1 - ~ + ~  t~o (82) 

so that nonrelativistic energy E momentum p, position x,  and time t are 
given by 

_ _  ^ t  2 
E = p o  M C Z = l z ( k  ) , k ' = / ~ o + p  ~ (83a) 

p = ~p/~' (83b) 

x = a(01 +/~o0o +/~'? ) (83c) 

t = a,(Oo + ? ) (83d) 

in complete analogy with the classical case considered in Section 2. 
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5. DISCRETIZATION OF THE ROTATIONS 

Keeping in mind the further generalization of the discretization proce- 
dure of free-particle kinematics to the case of 3 + 1 dimensions we consider 
the discretization of pure rotations which are subgroups of both nonrelativ- 
istic and relativistic free-particle kinematical groups. As we shall see one can 
put forward the discretization procedure for the case of admissible rotations 
which form a compact set in complete analogy to the discretization proce- 
dure which results in choosing a noncompact set of admissible Minkovsky 
non-Eucledian rotations considered above. 

As previously we consider initially the discretization procedure of the 
momentum of the particle. 

So let us suppose that the moment of the particle is along the x~ axis 
and is equal to 

p, =~rh  (84) 

Then after rotation by the angle 0~<~/2 in the xix 2 plane we obtain 
that 

p] = p ~cos 0 = tzrh cos 0 (85a) 

p~ = plsin0 = ~rh sin,/, (85b) 

Let us rewrite this in the form 

m l+__a__ ( ~ )  (86a) 
P " - - ~  (1 + az) , /2  

l + a ( a r n )  
p ; = / z  - - -  ~ , a > 0  (86b) 

( l+ ,~z )  ~/z 

where a = tan 0. In full analogy with the procedure of Section 3 we consider 
the factor 

~0 = ~ 1 + a (87) 
(1 q- a2)  I/2 

as a new scale obtained after rotation. 
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The discretization procedure can be introduced in a natural way if we 
suppose that the admissible rotations obey the following conditions: 

th 
- rh - k2 (88a) 

l + a  

r f fa  _ / 7  ( 8 8 b )  
l + a  " 

so that 

k 2 ~  ( 8 9 )  

- ~ - -  k 2 

which we can compared with (56). 
From (85)-(88) it follows that after rotation by an admissible angle, p l 

and P2 components of the momentum can be written in the following form: 

p', = - )=-   o]5 ', (90a) 

t ^t 
P2 = ~O I~ ~ ~ o P 2  (90b) 

that is as products of a scale factor and integers. 
Let us mention that a = t a n S ,  ( 0 ~ 8 ~ r / 2 )  is taking all admissible 

values if the integer/~2 is taking rh admissible values 

0~<k2~pfi (91) 
and that 

]5, + ]5;_ = rh (92) 
is an invariant of the discrete admissible rotations in this case. 

The other cases can be treated similarly (see Appendix). So we can 
conclude that there exist 461 admissible rotation angles and correspondingly 
461 admissible directions of the momentum vector. This is illustrated in 
Figure 2. 

In the same way rotations of the momentum vector leave invariant the 
quadratic form 

") 9 - -  2 ^ 2 (93) p~ + p~ --/~0 m 

so that they all lie on the circle, the transformation of the integers ]5 leave 
invariant the form 

[ b , l + l P 2 l - - , ~  (94) 

so that their end points lie on the square (see Figure 2). 
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5 

- 5 p, 

Fig, 2. The 4th admissible rotation angles and 4rh admissible directions of the momentum 

vector. 

Let us suppose now that in the system of reference where the momen- 
tum of the particle is along the x~ axis direction and is equal as before to 
p~ =/~rh, the position of the particle is given by 

x m = arhd h (95a) 

x 2 = arhg12 (95b) 

where ,~ and Ol are arbitrary integer numbers. Then the admissible rota- 
tions lead to the transformation 

x '  I = x I cos0 + x2sin0 (96a) 

x~ = x2cos O - xlsin O (96b) 

which can be written also as 

, l + a  ( rh ^ rha ^ ) ao ( jO ,gh+P~02  ) (97a) 
x l =  a - - - - -  = ( l + a 2 )  ' /a  ~ q l  + l ~ - s  

( . . . . . .  
x ; = a  . . . .  a o ( p , q ~ - P 2 q l )  (97b) 

_ (l  + or2)1/2 ~ q 2  l ~ a  q, - -  
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So we see that admissible rotations of the position of the particle given by 
(97) lead to the positions for which the coordinates are of the admissible 
type products of the scale factors and integers. 

6. LORENTZ 0(3,  1) GROUP ON TH E LATI'ICE 

Now, after the considerations of the discretization procedures of the 
main elements of the Lorentz group--two-dimensional  Lorentz boosts and 
two-dimensional rotat ions--we can turn to the general case and consider 
the discretization procedure of the Lorentz group 0(3, I). 

The timelike momentum vector can be written in general as 

P0 = Mcoshw (98a) 

pl = Msinwcos0  (98b) 

P2 = M sinh w sin 0 cos q~ (98c) 

P3 = MsinhwsinOsinq)  (98d) 

where M is the mass of the particle. 
We suppose that M = t % r h  3, where /~o is a scale parameter with 

dimension of mass and rh is an integral dimensionless number. 
We suppose now that the boost parameter w and rotation angles 0 and 

4' are admissible [see (50) and (89)] so that 

s (99a) tanhwk'-- ph + s 

tan 0k'- - rh - s t a n % ~ -  - - r h  - s  (99b) 

in the case when 0 ~  < w < ~ and 0<~ 0, 4' ~< ~r/2 and analogous formulas for 
different values of ( w, O, 4'). 

Then it easy to verify that 

po - ~ o P 0  = ~0(,~ + s  

p ,  = ~, •, = m ,  s  - s  ),~, 

p2 - r,_, b~_ = ~,2s163 - s ) 

p 3 - ~ 3 P 3  =~3s163163 

(100a) 

(100b) 

(mOc) 

(lOOd) 
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where 

#0 = ~7( w,, ) (101a) 

t~, = ~t0~,(0,2 ) (101b) 

~2 = ~3 =/~,7(cp,,) (101c) 

and 

1 - tanh wk, 

7 ( w , , ) =  (l_tanh2Wk,),/: (102a) 

1 +tan0k2 
7(0k2)= (102b) 

1 ' 2~ xt/2 
+ t a n  ok2 ) 

1 + tan (Pk3 
~,(cp,,)= (1 +tan2cpk~) '/2 (102c) 

It is easy to see that the following expression 

Po I-I P=I-I &[: (103) 

is the invariant of transformation (100). 
Let us mention that when/~ --, 0, then rh ~ oo and from (99) follows that 

all parameters wk,, 0k2, q~k3 fall into continuum in this limit. 
We suppose now that in the system of rest of the particle when 

p ~  the initial four-dimensional position is given by the vector 
QO =(arh300, arh3~, where a is the scale parameter of coordinates in the 
system of rest of the particle and 0~ some arbitrary integers. Then the 
transformation from the system of rest of the particle to some admissible 
Lorentz system where the momentum of the particle is given by (100) is 
accompanied by the transformation of the coordinates of the particle of the 
following form: 

Po t3o 1 Qo : ~ ~o + ~ (pQO) (104a) 

p[ (pQO) ] 

Q = Q ~  + m [ ~ o ~ r  + Q ~  
(104b) 
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where p~, is given by (100), the coordinate Q~ is equal to 

e o  : a, ,3oo 

and the mass M is equal to 

Arshansky 

(1o5) 

M= (106) 

So, we see that in the admissible system both the momentum of the particle 
and its position are completely determined by two state factors--~ and a - -  
and eight integers ( th, s ~ , I~ ~,_ h:3, %,'-~ ). 

It is easy to see after rewriting (104) in the following form 

eo  = a(po0 ~ + p 0) 

[ ( P2+P3)o~ P'P2 0~ P'P~3 ~ 
Q l = a  pi0o ~  Po Po + ' M  Po + M  - Po + M 0  

Q2=a P20~)+po~Mqi + Po Po +M q2 + p o + ~  3] 

[ Po ~--~q2p2p3 ._0 (po P ~ + P ~ )  ] p o  + M  Q3 = a p30 ~ + -P '--P 3--- 0 ~ + + 03 o 
po+M 

(107a) 

(107b) 

(107c) 

(107d) 

that if the spatial part of the vector of the momentum is along one axis we 
recover the two-dimensional case (60) considered above. 

Let us mention also that the relativistic Galilean evolution of the 
particle parametrized by proper time parameter ~" in the arbitrary admissible 
Lorentz frame is given by 

p~ 
x~'(~-) = Q~' + ~-~  " , where r = aft73? (108) 

so that taking into account (104) we have that this evolution is described by 
(104) where now we must consider the position variable QO depending on ~': 

Q~ )= arh3( Oo + ~ ) (109) 

Note that Qo is "r independent. 
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A P P E N D I X  

Let 
angles: 

(a) 

us consider now three other regions of change of the rotation 

- ~ ' / 2 ~  < 0 ~<0 

Then 

P~0-- 
( 1 + ~ 2 )  I/2 

1+1,~1 
P ' - -  (1 + a 2 ) 1 / 2 ~  

(A.I) 

so that 

]~2 O<~k2<~m 

rh 
P'I  - -  l ~ ol - -  ?H - -  ]~ 2 

rh____~_~ _ k2 
/ ~ 2 -  1 -o~  

(A.2) 

(A.3) 

(A.4) 

(A.5) 

is an invariant of the transformation in this case. 

(b) ~ ' /2~  < 0 ~< ~r 

1 - o ~  l + l a l  
go = g - -  

( 1 +  off) ' / 2  ( | -{-@2) I/2 
(A.6) 

]~2 

r h - k  2 
(A.7) 

P"-  1-,~ 

/)2-- - -  m _ r h _ / ~  2 
1 - a  

(A.8) 

(A.9) 
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so that  

is an invar ian t  of  the t r ans fo rmat ion .  

(c) - rr <~ 0 ~< - r r /2  

l + a  
/*o-- /* ( l  q- ~2) I/2 

a - - - - - - - = z - -  ~>0, O~</~2~<rh 
r h - - k  2 

/~"-- l §  -- 

^ , _  r h a  _ /~, 
P2 1 + ~  " 

so that  

IP',l+lPil=,  

is invar iant  of  the t r ans fo rma t ion  in this case. 

(A.II) 

(A.12)  

(A.13)  

(A.14)  

(A.15)  


